Statistical Curse of the Second Half Rank

Jean Desbois, Alexios Polychronakos, S.O.

JSTAT 2011 P01025

and some recent developments
a problem from real life which can lead to a pretty much involved
combinatorics : ranking expectations in sailing boats regattas
example : the Spi Ouest France at la Trinité sur Mer (Brittany, each Easter)
involve a "large" number of identical boats $n_{b} \sim 100$
running a "large" number of races $n_{r} \sim 10=2,3$ races per day during 4 days

in each race each boat gets a rank $1 \leq \operatorname{rank} \leq 100$
no equal rank (no ex-aequo)
how to determine the final rank of a boat (and thus the winner) :

1) for each boat add its ranks in each race \rightarrow its score n_{t}
here $n_{b}=100$ and $n_{r}=10 \Rightarrow 10 \leq n_{t} \leq 1000$
$n_{t}=10 \rightarrow$ lowest score always $1^{\text {rst }}$
$n_{t}=1000 \rightarrow$ highest score always $100^{\text {th }}$
$n_{t}=10 \times 50=500 \rightarrow$ middle score
2) order the scores \Rightarrow final rank :
the boat with lowest score \Rightarrow winner $1^{\text {rst }}$
the next boat after the winner \Rightarrow second $2^{\text {nd }}$
what is the problem?
for example consider the ranks of a given boat to be
$51,67,76,66,55,39,67,59,66,54 \rightarrow$ its score $n_{t}=600$
clearly this boat has a mean rank $\frac{600}{10}=60$
\rightarrow on average it has been $60^{\text {th }}$
\rightarrow one might naively expect its final rank to be around $60^{\text {th }}$ no way : its final rank will rather be around $70^{\text {th }} \rightarrow$ "curse" see Spi Ouest 2009 data :
(À la une ~ M GmailYouTube - Broa.

Apple © Yahoo!

60	496.00	$3 \mathrm{~J}$ X. Bourrut Lacouture	53.00	60.00	35.00	58.00	66.00	(69.00)	62.00	63.00	36.00	63.00
61	499.00	Atout Nautisme M. Bolou	52.00	1.00)	67.00	42.00	48.00	26.00	91.00	49.00	91.00	33.00
62	500.00	Bmw Sailing Cup $\mathrm{N}^{\circ} 8$ B. Le Rossignol	28.00	76.00	76.00	8.00)	57.00	15.00	61.00	74.00	46.00	67.00
63	501.00	Jeroboam Marine Lorient X. Bonvarlet	55.00	64.00	52.00	65.00	49.00	53.00	52.00	60.00	51.00	73.00)
64	509.00	$\begin{aligned} & \text { Icam-Olac } \\ & \text { A. Dal } \end{aligned}$	58.00	68.00	45.00	70.00	64.00	48.00	60.00	61.00	5.00)	35.00
65	509.00	Bmw Sailing Cup N ${ }^{\circ} 11$ R. Lebohec	68.00	55.00	65.00	57.00	(91.00)	40.00	55.00	65.00	60.00	44.00
66	510.00	Ste Morbihannaise de Navigation H. Dubois	46.00	62.00	38.00	76.00	(91.00)	37.00	73.00	48.00	72.00	58.00
67	515.00	Bmw Sailing Cup N ${ }^{\circ} 12$ M. Dolle	(91.00)	57.00	68.00	61.00	29.00	61.00	54.00	58.00	67.00	60.00
68	518.00	J' Marine - Marine Lorient G. Lautredou	22.00	65.00	56.00	67.00	54.00	(75.00)	66.00	57.00	63.00	68.00
69	521.00	Cholet C. Bore	63.00	59.00	51.00	(68.00)	61.00	63.00	64.00	53.00	48.00	59.00
70	524.00	J -Venture M. Le Borgne	51.00	67.00	(76.00)	66.00	55.00	39.00	67.00	59.00	66.00	54.00
71	543.00	Bmw Sailing Cup $\mathrm{N}^{\circ} 2$ O. Tarle	50.00	74.00	50.00	64.00	39.00	72.00	68.00	70.00	56.00	1.00)
72	553.00	Penac'h B. Jaud	66.00	61.00	(73.00)	72.00	56.00	65.00	56.00	56.00	57.00	64.00
73	560.00	Ymir Junior H. Schilling	45.00	66.00	64.00	56.00	53.00	44.00	68.00	73.00	1.00)	91.00
74	564.00	Art \& Stamps G. Le Baud	77.00	70.00	(88.00)	71.00	72.00	77.00	59.00	40.00	58.00	40.00
75	571.00	Marine Lorient P. Coindreau	47.00	(91.00)	49.00	77.00	52.00	67.00	75.00	77.00	62.00	65.00
76	608.00	Denis Pelfresne N. Barre	46.00	63.00	78.00	80.00	70.00	(85.00)	74.00	66.00	61.00	70.00
77	630.00	J'Mini A. Ponsar	(91.00)	73.00	81.00	83.00	32.00	82.00	63.00	67.00	74.00	75.00
78	645.00	Jade Hisse Cn Pornic 1 R. Romano	54.00	78.00	75.00	75.00	67.00	73.00	79.00	(91.00)	64.00	80.00
79	653.00	Mazda G. Tarin	70.00	77.00	72.00	62.00	69.00	76.00	(83.00)	72.00	76.00	79.00
80	655.00	Ldt	57.00	56.00	83.00	69.0	(91.00)	78.00	70.00	91.00	73.00	8.0

NB :
$51,67,(76), 66,55,39,67,59,66,54$
implies that the highest rank (76) is not taken into account
$\Rightarrow 9$ races : 51, 67, ,66, 55,39,67,59,66,54 \rightarrow score $n_{t}=524$
\Rightarrow mean rank $\frac{524}{9}=58$
on average $58^{\text {th }} \rightarrow 70^{\text {th }}$ even worse
a qualitative explanation of this "curse" is simple:
given the ranks of the boat : 51,67,76,66,55,39,67,59,66,54
assume that the ranks of the other boats are random variables with uniform distribution
random ranks : a good assumption if the crews are more or less equally worthy (which is in part the case)
since no ex aequo it means :
ranks of the other boats $=$ a random permutation
in the first race : random permutation of $(1,2,3, \ldots, 50,52, \ldots, 100)$
in the second race : random permutation of $(1,2,3, \ldots, 66,68, \ldots, 100)$
each race is obviously independent from the others
\rightarrow a score is a sum of 10 independent random variables

10 is already a large number in probability calculus :
\rightarrow Central Limit Theorem applies
\rightarrow scores are random variables with gaussian probability density centered around the middle score $10 \times 50=500$
gaussian distribution \Rightarrow a lot a boats with scores packed around 500
if the score of a boat is >500
its final rank is pushed upward from its mean rank

$$
\Rightarrow \text { statistical "curse" }
$$

on the contrary if the score of a boat is <500 its final rank is pushed downward from its mean rank

$$
\Rightarrow \text { statistical "blessing" }
$$

write things more precisely : namely given the score n_{t} of a boat what is the probability distribution $P_{n_{t}}(m)$ for its final rank to be m ?
a complication : $P_{n_{t}}(m)$ does not depend only on the score n_{t} of the boat but also on its ranks in each race
for example : $n_{r}=3, n_{b}=3$ with a boat with score $n_{t}=6$
it is very easy to check by complete enumeration that $P_{6=2+2+2}(m) \neq P_{6=1+2+3}(m)$ (distributions are similar but different)
\rightarrow a simplification : consider n_{b} boats with random ranks
i.e ranks $=$ random permutation of $\left(1,2,3, \ldots, n_{b}\right)$
\oplus an additional/virtual boat specified only by its score n_{t}
\rightarrow same question : given the score n_{t} of a virtual boat what is the probability distribution $P_{n_{t}}(m)$ for its final rank to be m ?
\rightarrow almost the same but simpler
call $n_{i, k}$ rank of the boat i in a given race $k\left(1 \leq i \leq n_{b}\right.$ and $\left.1 \leq k \leq n_{r}\right)$

$$
\left\langle n_{i, k}\right\rangle=\frac{1+n_{b}}{2}
$$

no ex-aequo in race $k: \Rightarrow$ the $n_{i, k}$'s are correlated random variables

$$
\begin{gathered}
\text { sum rule } \quad \sum_{i=1}^{n_{b}} n_{i, k}=1+2+3+\ldots+n_{b}=\frac{n_{b}\left(1+n_{b}\right)}{2} \\
\left\langle n_{i, k} n_{j, k}\right\rangle-\left\langle n_{i, k}\right\rangle\left\langle n_{j, k}\right\rangle=\frac{1+n_{b}}{12}\left(n_{b} \delta_{i, j}-1\right)
\end{gathered}
$$

$$
n_{i, k} \Rightarrow \text { score of boat } i=\sum_{k=1}^{n_{r}} n_{i, k} \equiv n_{i} \text { and middle score }=n_{r} \frac{1+n_{b}}{2}
$$

large n_{r} limit \rightarrow Central Limit Theorem for correlated random variables \Rightarrow joint density probability distribution

$$
\begin{gathered}
f\left(n_{1}, \ldots, n_{n_{b}}\right)= \\
\sqrt{2 \pi \lambda n_{b}}\left(\sqrt{\frac{1}{2 \pi \lambda}}\right)^{n_{b}} \delta\left(\sum_{i=1}^{n_{b}}\left(n_{i}-n_{r} \frac{1+n_{b}}{2}\right)\right) \exp \left[-\frac{1}{2 \lambda} \sum_{i=1}^{n_{b}}\left(n_{i}-n_{r} \frac{1+n_{b}}{2}\right)^{2}\right] \\
\lambda=n_{r} \frac{n_{b}\left(1+n_{b}\right)}{12}
\end{gathered}
$$

for a virtual boat with score n_{t} :
$P_{n_{t}}(m)$ is the probability for $m-1$ boats among the n_{b} 's to have a score $n_{i}<n_{t}$ and for the other $n_{b}-m+1$'s to have a score $n_{i} \geq n_{t}$

$$
P_{n_{t}}(m)=\binom{n_{b}}{m-1} \int_{-\infty}^{n_{t}} d n_{1} \ldots d n_{m-1} \int_{n_{t}}^{\infty} d n_{m} \ldots d n_{n_{b}} f\left(n_{1}, \ldots, n_{n_{b}}\right)
$$

take also large number of boats limit \rightarrow saddle point approximation to finally get $\langle m\rangle=$ cumulative probability distribution of a normal variable

$$
\begin{gathered}
\langle m\rangle=\frac{n_{b}}{\sqrt{2 \pi \lambda}} \int_{-\infty}^{\bar{n}_{t}} \exp \left[-\frac{n^{2}}{2 \lambda}\right] d n \\
\bar{n}_{t}=n_{t}-n_{r} \frac{\left(1+n_{b}\right)}{2} \\
n_{r} \leq n_{t} \leq n_{r} n_{b} \rightarrow-n_{r} \frac{n_{b}}{2} \leq \bar{n}_{t} \leq n_{r} \frac{n_{b}}{2}
\end{gathered}
$$

variance

$$
\frac{(\Delta m)^{2}}{n_{b}}=\frac{1}{\sqrt{2 \pi \lambda}} \int_{-\infty}^{\bar{n}_{t}} \exp \left[-\frac{n^{2}}{2 \lambda}\right] d n \frac{1}{\sqrt{2 \pi \lambda}} \int_{-\infty}^{-\bar{n}_{t}} \exp \left[-\frac{n^{2}}{2 \lambda}\right] d n-\frac{1}{2 \pi} \exp \left[-\frac{\bar{n}_{t}^{2}}{\lambda}\right]
$$

$\Delta \mathrm{m}$

now consider small number of races $n_{r}=2,3, \ldots$ and boats $n_{b}=1,2, \ldots$
\Rightarrow combinatorics problem
the simplest case $n_{r}=2$: like a "2-body" problem
\Rightarrow exact solution for $P_{n_{t}}(m)$
how to proceed :
i) represent possible configurations of ranks in the two races by points on a $n_{b} \times n_{b}$ lattice

2 races \leftrightarrow square lattice, 3 races \leftrightarrow cubic lattice, ...
no ex aequo $\Rightarrow 1$ point per line and per column
in general for n_{b} boats and n_{r} races $\rightarrow\left(n_{b}!\right)^{n_{r}-1}$ such configurations
ii) enumerate the configurations with $m-1$ points below the diagonal n_{t}
\Rightarrow final rank m

$$
\begin{array}{r}
n_{b}=6 \\
n_{t}-1=5
\end{array}
$$

a $m=3$ configuration
4

2

combinatorics (not easy) :
for $2 \leq n_{t} \leq 1+n_{b}$
$\Rightarrow P_{n_{t}}(m)=\left(1+n_{b}\right) \sum_{k=0}^{m-1}(-1)^{k}\left(1+n_{b}-n_{t}+m-k\right)^{n_{t}-1} \frac{\left(n_{b}-n_{t}+m-k\right)!}{k!\left(1+n_{b}-k\right)!(m-k-1)!}$
for $2+n_{b} \leq n_{t} \leq 2 n_{b}+1$ by symmetry $P_{n_{b}+1-k}\left(n_{b}+2-m\right)=P_{n_{b}+2+k}(m)$
for the middle score $n_{t}=2 \frac{1+n_{b}}{2}=1+n_{b}$

$$
\Rightarrow P_{n_{t}=1+n_{b}}(m)=\left(1+n_{b}\right) \sum_{k=0}^{m-1}(-1)^{k} \frac{(m-k)^{n_{b}}}{k!\left(1+n_{b}-k\right)!}
$$

```
Table[p[5, nt, m], {nt, 2, 6}, {m, 1, 6}]
```

$$
\begin{aligned}
& \left\{\{1,0,0,0,0,0\},\left\{\frac{4}{5}, \frac{1}{5}, 0,0,0,0\right\},\left\{\frac{9}{20}, \frac{1}{2}, \frac{1}{20}, 0,0,0\right\},\right. \\
& \left.\left\{\frac{2}{15}, \frac{11}{20}, \frac{3}{10}, \frac{1}{60}, 0,0\right\},\left\{\frac{1}{120}, \frac{13}{60}, \frac{11}{20}, \frac{13}{60}, \frac{1}{120}, 0\right\}\right\}
\end{aligned}
$$

$$
\text { Table }[p[n b, n t=1+n b, m] n b!,\{n b, 1,7\},\{m, 1, n b+1\}]
$$

$$
\{\{1,0\},\{1,1,0\},\{1,4,1,0\},\{1,11,11,1,0\},\{1,26,66,26,1,0\},
$$

$$
\{1,57,302,302,57,1,0\},\{1,120,1191,2416,1191,120,1,0\}\}
$$

\rightarrow Eulerian numbers

$$
\begin{aligned}
& \alpha=\frac{I}{I(p-I)} \\
& b=\frac{p+I}{I .2(p-I)^{2}} \\
& g=\frac{p p+4 p+1}{1.2 .3(p-I)^{3}} . \\
& \delta=\frac{p^{3}+11 p^{2}+11 p+1}{1 \cdot 2 \cdot 3 \cdot 4(p-1)^{4}} \\
& \varepsilon=\frac{p^{4}+26 p^{3}+66 p^{2}+26 p+1}{1.2 \cdot 3 \cdot 4 \cdot 5(p-1)^{3}} \\
& \zeta=\frac{p^{5}+57 p^{4}+302 p^{3}+302 p^{2}+57 p+I}{x \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6(p-x)^{6}} \\
& \eta=\frac{p^{6}+120 p^{3}+1191 p^{4}+2416 p^{3}+1191 p^{2}+120 p+1}{1.2 .3 \cdot 4 \cdot 5 \cdot 6.7(p-1)^{7}} \\
& \text { sec. } \\
& \text { Eulerian Polynomials } \\
& \frac{A_{n}(p) / p}{n!(p-1)^{n}} \quad(1 \leq n \leq 7)
\end{aligned}
$$

Eulerian number $=$

the number of permutations of the numbers 1 to n in which exactly m elements are greater than the previous element (permutations with m "ascents")

\boldsymbol{n}	\boldsymbol{m}	\quad Permutations
$\mathbf{1}$	0	(1)
2	0	$(2,1)$
	1	$(1,2)$
	0	$(3,2,1)$
3	1	$(1,3,2)(2,1,3)(2,3,1)(3,1,2)$
2	$(1,2,3)$	
n	$=4$	$(1,4,2,3) \rightarrow m=2$

generating function
$g[x, y]=\frac{e^{x}(-1+y)}{-e^{x y}+e^{x} y}$
Series [g[x, y], \{x, 0, 6\}]

$$
\begin{aligned}
& 1+x+\frac{1}{2}(1+y) x^{2}+\frac{1}{6}\left(1+4 y+y^{2}\right) x^{3}+\frac{1}{24}\left(1+11 y+11 y^{2}+y^{3}\right) x^{4}+ \\
& \frac{1}{120}\left(1+26 y+66 y^{2}+26 y^{3}+y^{4}\right) x^{5}+\frac{1}{720}\left(1+57 y+302 y^{2}+302 y^{3}+57 y^{4}+y^{5}\right) x^{6}+0[x]^{7}
\end{aligned}
$$

why Eulerian numbers should play a role here seems a mystery but : an other way to look at things by rewriting

$$
P_{n_{t}}(m)=\frac{1}{n_{b}!} \sum_{i=m}(-1)^{i+m} n_{n_{t}}(i)\left(1+n_{b}-i\right)!\binom{i-1}{m-1}
$$

$n_{n_{t}}(i)=$ Stirling partition numbers : count in how many ways can the numbers $\left(1,2, \ldots, n_{t}-1\right)$ be partitioned in i groups
example $n_{t}=5: \rightarrow 1$ way to split the numbers $(1,2,3,4)$ into 1 group
$\rightarrow 7$ ways to split the numbers $(1,2,3,4)$ into 2 groups
$(1),(2,3,4) ;(2),(1,3,4) ;(3),(1,2,4) ;(4),(1,2,3) ;(1,2),(3,4) ;(1,3),(2,4) ;(1,4),(2,3)$
$\rightarrow 6$ ways to split the numbers $(1,2,3,4)$ into 3 groups
$(1),(2),(3,4) ;(1),(3),(2,4) ;(1),(4),(2,3) ;(2),(3),(1,4) ;(2),(4),(1,3) ;(3),(4),(1,2)$
$\rightarrow 1$ way to split the numbers $(1,2,3,4)$ into 4 groups

$$
n_{t}=5 \rightarrow 1,6,7,1
$$

why Stirling numbers should play a role here seems again a mystery they appear from graph counting considerations on the configuration lattice :
for example for $n_{t}=5$
consider all the points below the diagonal

$a \left\lvert\, \begin{aligned} & 1 \\ & 1\end{aligned}\right.$
b $\left\lvert\, \begin{aligned} & 1 \\ & 2\end{aligned}\right.$
C| $\begin{aligned} & 1 \\ & 3\end{aligned}$
d $\left.\right|_{1} ^{2}$
$e \left\lvert\, \begin{array}{ll}2 & f \\ 2 & \\ 1\end{array}\right.$

$$
\Rightarrow \quad 6, \quad 7,1
$$

so from graph counting
$n_{n_{t}+1}(i+1)=$ under the diagonal n_{t} number of subgraphs with i points fully connected
\rightarrow recurrence relation :
either 0 point on the diagonal $n_{t}-1 \rightarrow n_{n_{t}}(i+1)\binom{n_{t}-1}{0}$
either 1 point on the diagonal $n_{t}-1 \rightarrow n_{n_{t}-1}(i)\binom{n_{t}-1}{1}$
either 2 points on the diagonal $n_{t}-1 \rightarrow n_{n_{t}-2}(i-1)\binom{n_{t}-1}{2}$
$\Rightarrow n_{n_{t}+1}(i+1)=\sum_{k=0}^{i} n_{n_{t}-k}(i+1-k)\binom{n_{t}-1}{k}$
\Leftrightarrow recurrence relation for Stirling partition numbers
there is indeed a one to one correspondance between Stirling partition (in fact second class Stirling) numbers and Eulerian numbers

$$
\operatorname{Eulerian}[\mathrm{n}, \mathrm{k}]=\sum_{j=1}^{k+1}(-1)^{k-j+1}\binom{n-j}{n-k-1} j!\text { Stirling }[n, j]
$$

why all this?

$$
\begin{gathered}
2 \text { races : } P_{n_{t}}(m)=\frac{1}{n_{b}!} \sum_{i=m}(-1)^{i+m} n_{n_{t}}(i)\left(1+n_{b}-i\right)!\binom{i-1}{m-1} \\
\rightarrow n_{r} \text { races }: P_{n_{t}}(m)=\frac{1}{\left(n_{b}!\right)^{n_{r}-1}} \sum_{i=m}(-1)^{i+m} n_{n_{t}}\left(i, n_{r}\right)\left(1+n_{b}-i\right)!^{n_{r}-1}\binom{i-1}{m-1}
\end{gathered}
$$

how to calculate $n_{n_{t}}\left(i, n_{r}\right) ? \rightarrow$ work in progress

