Statistical Curse of the Second Half Rank

Jean Desbois, Alexios Polychronakos, S.O.

JSTAT 2011 P01025

and some recent developments

a problem from real life which can lead to a pretty much involved combinatorics : ranking expectations in sailing boats regattas example : the Spi Ouest France at la Trinité sur Mer (Brittany, each Easter) involve a "large" number of identical boats $n_b \sim 100$ running a "large" number of races $n_r \sim 10 = 2,3$ races per day during 4 days

in each race each boat gets a rank $1 \le \text{rank} \le 100$

no equal rank (no ex-aequo)

how to determine the final rank of a boat (and thus the winner) :

1) for each boat add its ranks in each race \rightarrow its score n_t

here $n_b = 100$ and $n_r = 10 \Rightarrow 10 \le n_t \le 1000$

 $n_t = 10 \rightarrow \text{lowest score always } 1^{\text{rst}}$

 $n_t = 1000 \rightarrow \text{highest score always } 100^{\text{th}}$

 $n_t = 10 \times 50 = 500 \rightarrow \text{middle score}$

2) order the scores \Rightarrow final rank :

the boat with lowest score \Rightarrow winner 1^{rst}

the next boat after the winner \Rightarrow second 2nd

• • •

what is the problem?

for example consider the ranks of a given boat to be 51,67,76,66,55,39,67,59,66,54 \rightarrow its score $n_t = 600$ clearly this boat has a mean rank $\frac{600}{10} = 60$

 \rightarrow on average it has been 60^{th}

 \rightarrow one might naively expect its final rank to be around 60th no way : its final rank will rather be around 70th \rightarrow "curse" see Spi Ouest 2009 data :

🖕 Classement général J 80 – Spi O... 🛛 🕂

Classement général J 80 - Spi Ouest-France 2009

		_														
Spi.snt-v	oile.org/classement_	genera	ux.html											☆ ⊂ C'		Google
🧕 Historique 🔻	🔯 Les plus visités 🔻	- 🕹	Débuter avec Fir 🚦	🚮 À la une 🔻	M	mail	D Y	ouTube	e – Bro	a	🇯 Ap	ple 🤅	Yahoo!	🥕 Google Maps	🧟)	/ouTube
	60	496.00	3 J	53.00	60.00	35.00	58.00	66.00 ((69.00)	62.00	63.00	36.00	63.00			
	61	499.00	Atout Nautisme	52.00	(91.00)	67.00	42.00	48.00	26.00	91.00	49.00	91.00	33.00			
	60	E00.00	M. Bolou Bmw Sailing Cup N°8	29.00	76.00	76.00	(79.00)	57.00	45.00	64.00	74.00	46.00	67.00			
	62	500.00	B. Le Rossignol	20.00	76.00	76.00	(78.00)	57.00	15.00	61.00	74.00	46.00	67.00			
	63	501.00	X. Bonvarlet	55.00	64.00	52.00	65.00	49.00	53.00	52.00	60.00	51.00	(73.00)			
	64	509.00	A. Dal	58.00	68.00	45.00	70.00	64.00	48.00	60.00	61.00 ((75.00)	35.00			
	65	509.00	Bmw Sailing Cup N°11 R. Lebohec	68.00	55.00	65.00	57.00	(91.00)	40.00	55.00	65.00	60.00	44.00			
	66	510.00	Ste Morbihannaise de	46.00	62.00	38.00	76.00	(01.00)	37.00	73.00	48.00	72.00	59.00			
		510.00	H. Dubois	40.00	02.00	30.00	70.00	(91.00)	37.00	73.00	40.00	72.00	38.00			
	67	515.00	Bmw Sailing Cup N°12 M. Dolle	(91.00)	57.00	68.00	61.00	29.00	61.00	54.00	58.00	67.00	60.00			
	68	518.00	J' Marine - Marine Lori G. Lautredou	ent 22.00	65.00	56.00	67.00	54.00 ((75.00)	66.00	57.00	63.00	68.00			
	69	521.00	Cholet	63.00	59.00	51.00	(68.00)	61.00	63.00	64.00	53.00	48.00	59.00			
	70	524.00	J-Venture	51.00	67.00	(76.00)	66.00	55.00	39.00	67.00	59.00	66.00	54.00			
	74	E42.00	M. Le Borgne Bmw Sailing Cup N°2	50.00	74.00	50.00	64.00	20.00	72.00	60.00	70.00	56.00	(01.00)			
		545.00	O. Tarle Penac'h	50.00	74.00	50.00	64.00	39.00	72.00	00.00	70.00	56.00	(91.00)			
	72	553.00	B.Jaud	66.00	61.00	(73.00)	72.00	56.00	65.00	56.00	56.00	57.00	64.00			
	73	560.00) Ymir Junior H. Schilling	45.00	66.00	64.00	56.00	53.00	44.00	68.00	73.00	(91.00)	91.00			
	74	564.00	Art & Stamps G. Le Baud	77.00	70.00	(88.00)	71.00	72.00	77.00	59.00	40.00	58.00	40.00			
	75	571.00	Marine Lorient	47.00	(91.00)	49.00	77.00	52.00	67.00	75.00	77.00	62.00	65.00			
	76	608.00	Denis Pelfresne	46.00	63.00	78.00	80.00	70.00	(85.00)	74.00	66.00	61.00	70.00			
		000.00	N. Barre J'Mini	(04.00)	70.00	04.00	00.00	00.00		00.00	07.00	74.00	75.00			
		630.00	A. Ponsar	(91.00)	73.00	81.00	83.00	32.00	82.00	63.00	67.00	74.00	75.00			
	78	645.00	R. Romano	54.00	78.00	75.00	75.00	67.00	73.00	79.00	(91.00)	64.00	80.00			
	79	653.00) Mazda G. Tarin	70.00	77.00	72.00	62.00	69.00	76.00 ((83.00)	72.00	76.00	79.00			
	80	655.00	Ldt	57.00	56.00	83.00	69.00	(91.00)	78.00	70.00	91.00	73.00	78.00			

NB:

51, 67, (76), 66, 55, 39, 67, 59, 66, 54

implies that the highest rank (76) is not taken into account

⇒ 9 races : 51,67, ,66,55,39,67,59,66,54 → score $n_t = 524$ ⇒ mean rank $\frac{524}{9} = 58$ on average $58^{\text{th}} \rightarrow 70^{\text{th}}$ even worse a qualitative explanation of this "curse" is simple :

given the ranks of the boat : 51,67,76,66,55,39,67,59,66,54

assume that the ranks of the other boats are random variables with uniform distribution

random ranks : a good assumption if the crews are more or less equally worthy (which is in part the case)

since no ex aequo it means :

. . .

ranks of the other boats = a random permutation

in the first race : random permutation of $(1, 2, 3, \dots, 50, 52, \dots, 100)$

in the second race : random permutation of (1, 2, 3, ..., 66, 68, ..., 100)

each race is obviously independent from the others

 \rightarrow a score is a sum of 10 independent random variables

10 is already a large number in probability calculus :

 \rightarrow Central Limit Theorem applies

 \rightarrow scores are random variables with gaussian probability density centered around the middle score $10 \times 50 = 500$

gaussian distribution \Rightarrow a lot a boats with scores packed around 500

if the score of a boat is > 500its final rank is pushed upward from its mean rank \Rightarrow statistical "curse"

on the contrary if the score of a boat is < 500its final rank is pushed downward from its mean rank \Rightarrow statistical "blessing" write things more precisely : namely given the score n_t of a boat what is the probability distribution $P_{n_t}(m)$ for its final rank to be m?

a complication : $P_{n_t}(m)$ does not depend only on the score n_t of the boat but also on its ranks in each race

for example : $n_r = 3$, $n_b = 3$ with a boat with score $n_t = 6$

it is very easy to check by complete enumeration that $P_{6=2+2+2}(m) \neq P_{6=1+2+3}(m)$ (distributions are similar but different)

 \rightarrow a simplification : consider n_b boats with random ranks

i.e ranks = random permutation of $(1, 2, 3, ..., n_b)$

 \oplus an additional/virtual boat specified only by its score n_t

 \rightarrow same question : given the score n_t of a virtual boat what is the probability distribution $P_{n_t}(m)$ for its final rank to be m?

 \rightarrow almost the same but simpler

call $n_{i,k}$ rank of the boat *i* in a given race k ($1 \le i \le n_b$ and $1 \le k \le n_r$)

$$\langle n_{i,k} \rangle = \frac{1+n_b}{2}$$

no ex-aequo in race $k : \Rightarrow$ the $n_{i,k}$'s are correlated random variables

sum rule
$$\sum_{i=1}^{n_b} n_{i,k} = 1 + 2 + 3 + \dots + n_b = \frac{n_b(1 + n_b)}{2}$$
$$\langle n_{i,k}n_{j,k} \rangle - \langle n_{i,k} \rangle \langle n_{j,k} \rangle = \frac{1 + n_b}{12} (n_b \delta_{i,j} - 1)$$

 $n_{i,k} \Rightarrow$ score of boat $i = \sum_{k=1}^{n_r} n_{i,k} \equiv n_i$ and middle score $= n_r \frac{1+n_b}{2}$ large n_r limit \rightarrow Central Limit Theorem for correlated random variables \Rightarrow joint density probability distribution

$$f(n_1,\ldots,n_{n_b}) =$$

$$\sqrt{2\pi\lambda n_b} \left(\sqrt{\frac{1}{2\pi\lambda}}\right)^{n_b} \delta\left(\sum_{i=1}^{n_b} (n_i - n_r \frac{1+n_b}{2})\right) \exp\left[-\frac{1}{2\lambda} \sum_{i=1}^{n_b} (n_i - n_r \frac{1+n_b}{2})^2\right]$$
$$\lambda = n_r \frac{n_b(1+n_b)}{12}$$

for a virtual boat with score n_t :

 $P_{n_t}(m)$ is the probability for m-1 boats among the n_b 's to have a score $n_i < n_t$ and for the other $n_b - m + 1$'s to have a score $n_i \ge n_t$

$$P_{n_t}(m) = \binom{n_b}{m-1} \int_{-\infty}^{n_t} dn_1 \dots dn_{m-1} \int_{n_t}^{\infty} dn_m \dots dn_{n_b} f(n_1, \dots, n_{n_b})$$

take also large number of boats limit \rightarrow saddle point approximation to finally get $\langle m \rangle$ = cumulative probability distribution of a normal variable

$$\langle m \rangle = \frac{n_b}{\sqrt{2\pi\lambda}} \int_{-\infty}^{\bar{n}_t} \exp\left[-\frac{n^2}{2\lambda}\right] dn$$

$$\bar{n}_t = n_t - n_r \frac{(1+n_b)}{2}$$

$$n_r \le n_t \le n_r n_b \to -n_r \frac{n_b}{2} \le \bar{n}_t \le n_r \frac{n_b}{2}$$

variance

$$\frac{(\Delta m)^2}{n_b} = \frac{1}{\sqrt{2\pi\lambda}} \int_{-\infty}^{\bar{n}_t} \exp\left[-\frac{n^2}{2\lambda}\right] dn \frac{1}{\sqrt{2\pi\lambda}} \int_{-\infty}^{-\bar{n}_t} \exp\left[-\frac{n^2}{2\lambda}\right] dn - \frac{1}{2\pi} \exp\left[-\frac{\bar{n}_t^2}{\lambda}\right]$$

Δm

now consider small number of races $n_r = 2, 3, ...$ and boats $n_b = 1, 2, ...$

 \Rightarrow combinatorics problem

the simplest case $n_r = 2$: like a "2-body" problem

 \Rightarrow exact solution for $P_{n_t}(m)$

how to proceed :

i) represent possible configurations of ranks in the two races by points on a $n_b \times n_b$ lattice

2 races \leftrightarrow square lattice, 3 races \leftrightarrow cubic lattice, ...

no ex aequo \Rightarrow 1 point per line and per column

in general for n_b boats and n_r races $\rightarrow (n_b!)^{n_r-1}$ such configurations

ii) enumerate the configurations with m-1 points below the diagonal n_t

 \Rightarrow final rank *m*

combinatorics (not easy) :

for $2 \le n_t \le 1 + n_b$

$$\Rightarrow P_{n_t}(m) = (1+n_b) \sum_{k=0}^{m-1} (-1)^k (1+n_b-n_t+m-k)^{n_t-1} \frac{(n_b-n_t+m-k)!}{k!(1+n_b-k)!(m-k-1)!}$$

for $2 + n_b \le n_t \le 2n_b + 1$ by symmetry $P_{n_b+1-k}(n_b+2-m) = P_{n_b+2+k}(m)$

for the middle score $n_t = 2\frac{1+n_b}{2} = 1+n_b$

$$\Rightarrow P_{n_t=1+n_b}(m) = (1+n_b) \sum_{k=0}^{m-1} (-1)^k \frac{(m-k)^{n_b}}{k!(1+n_b-k)!}$$

Table[p[5, nt, m], {nt, 2, 6}, {m, 1, 6}]

$$\left\{\{1, 0, 0, 0, 0, 0\}, \left\{\frac{4}{5}, \frac{1}{5}, 0, 0, 0, 0\right\}, \left\{\frac{9}{20}, \frac{1}{2}, \frac{1}{20}, 0, 0, 0\right\}, \left\{\frac{2}{15}, \frac{11}{20}, \frac{3}{10}, \frac{1}{60}, 0, 0\right\}, \left\{\frac{1}{120}, \frac{13}{60}, \frac{11}{20}, \frac{13}{60}, \frac{1}{120}, 0\right\}\right\}$$

Table[p[nb, nt = 1 + nb, m] nb!, {nb, 1, 7}, {m, 1, nb + 1}]

 $\{\{1, 0\}, \{1, 1, 0\}, \{1, 4, 1, 0\}, \{1, 11, 11, 1, 0\}, \{1, 26, 66, 26, 1, 0\}, \{1, 57, 302, 302, 57, 1, 0\}, \{1, 120, 1191, 2416, 1191, 120, 1, 0\}\}$

 \rightarrow Eulerian numbers

$$a = \frac{1}{1(p-1)}$$

$$b = \frac{p+1}{1.2(p-1)^2}$$

$$b = \frac{p+1}{1.2(p-1)^2}$$

$$b = \frac{pp+4p+1}{1.2.3(p-1)^3}$$

$$b = \frac{p^3+11p^2+11p+1}{1.2.3.4(p-1)^4}$$

$$b = \frac{p^4+26p^3+66p^2+26p+1}{1.2.3.4+5(p-1)^5}$$

$$c = \frac{p^5+57p^4+302p^3+302p^2+57p+1}{1.2.3.4+5.6(p-1)^6}$$

$$\eta = \frac{p^6+120p^5+1191p^4+2416p^3+1191p^2+120p+1}{1.2.3.4+5.6.7(p-1)^7}$$

Eulerian number =

the number of permutations of the numbers 1 to n in which exactly m elements are greater than the previous element (permutations with m "ascents")

n	m	Permutations
1	0	(1)
2	0	(2, 1)
2	1	(1, 2)
	0	(3, 2, 1)
3	1	(1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2)
	2	(1, 2 , 3)
<i>n</i> =	= 4	$(1,4,2,3) \to m = 2$

generating function

$$g[\mathbf{x}, \mathbf{y}] = \frac{\mathbf{e}^{\mathbf{x}} (-1 + \mathbf{y})}{-\mathbf{e}^{\mathbf{x}\mathbf{y}} + \mathbf{e}^{\mathbf{x}}\mathbf{y}}$$

Series[g[x, y], {x, 0, 6}]

$$1 + x + \frac{1}{2} (1 + y) x^{2} + \frac{1}{6} (1 + 4y + y^{2}) x^{3} + \frac{1}{24} (1 + 11y + 11y^{2} + y^{3}) x^{4} + \frac{1}{120} (1 + 26y + 66y^{2} + 26y^{3} + y^{4}) x^{5} + \frac{1}{720} (1 + 57y + 302y^{2} + 302y^{3} + 57y^{4} + y^{5}) x^{6} + 0[x]^{7}$$

why Eulerian numbers should play a role here seems a mystery but : an other way to look at things by rewriting

$$P_{n_t}(m) = \frac{1}{n_b!} \sum_{i=m} (-1)^{i+m} n_{n_t}(i) (1+n_b-i)! \binom{i-1}{m-1}$$

 $\begin{array}{l} n_{n_{l}}(i) = \text{Stirling partition numbers : count in how many ways can the} \\ \text{numbers } (1,2,\ldots,n_{l}-1) \text{ be partitioned in } i \text{ groups} \\ \text{example } n_{l} = 5 : \rightarrow 1 \text{ way to split the numbers } (1,2,3,4) \text{ into 1 group} \\ \rightarrow 7 \text{ ways to split the numbers } (1,2,3,4) \text{ into 2 groups} \\ (1),(2,3,4);(2),(1,3,4);(3),(1,2,4);(4),(1,2,3);(1,2),(3,4);(1,3),(2,4);(1,4),(2,3) \\ \rightarrow 6 \text{ ways to split the numbers } (1,2,3,4) \text{ into 3 groups} \\ (1),(2),(3,4);(1),(3),(2,4);(1),(4),(2,3);(2),(3),(1,4);(2),(4),(1,3);(3),(4),(1,2) \\ \rightarrow 1 \text{ way to split the numbers } (1,2,3,4) \text{ into 4 groups} \end{array}$

$$n_t = 5 \rightarrow 1, 6, 7, 1$$

why Stirling numbers should play a role here seems again a mystery they appear from graph counting considerations on the configuration lattice :

> for example for $n_t = 5$ consider all the points below the diagonal

 $\Rightarrow 6, 7, 1$

so from graph counting

 $n_{n_t+1}(i+1)$ = under the diagonal n_t number of subgraphs with *i* points fully connected

 \rightarrow recurrence relation :

. . .

either 0 point on the diagonal $n_t - 1 \rightarrow n_{n_t}(i+1) \begin{pmatrix} n_t - 1 \\ 0 \end{pmatrix}$ either 1 point on the diagonal $n_t - 1 \rightarrow n_{n_t-1}(i) \begin{pmatrix} n_t - 1 \\ 1 \end{pmatrix}$ either 2 points on the diagonal $n_t - 1 \rightarrow n_{n_t-2}(i-1) \begin{pmatrix} n_t - 1 \\ 2 \end{pmatrix}$

$$\Rightarrow n_{n_t+1}(i+1) = \sum_{k=0}^{i} n_{n_t-k}(i+1-k) \binom{n_t-1}{k}$$

 \Leftrightarrow recurrence relation for Stirling partition numbers

there is indeed a one to one correspondance between Stirling partition (in fact second class Stirling) numbers and Eulerian numbers

Eulerian[n,k] =
$$\sum_{j=1}^{k+1} (-1)^{k-j+1} \binom{n-j}{n-k-1} j!$$
 Stirling[n, j]

why all this?

2 races :
$$P_{n_t}(m) = \frac{1}{n_b!} \sum_{i=m} (-1)^{i+m} n_{n_t}(i) (1+n_b-i)! {i-1 \choose m-1}$$

$$\to \mathbf{n_r} \operatorname{races} : P_{n_t}(m) = \frac{1}{(n_b!)^{n_r-1}} \sum_{i=m} (-1)^{i+m} n_{n_t}(i, n_r) (1+n_b-i)!^{n_r-1} \binom{i-1}{m-1}$$

how to calculate $n_{n_t}(i, n_r)$? \rightarrow work in progress