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a problem from real life which can lead to a pretty much involved
combinatorics : ranking expectations in sailing boats regattas

example : the Spi Ouest France at la Trinité sur Mer (Brittany, each Easter)

involve a ”large” number of identical boats nb ∼ 100

running a ”large” number of races nr ∼ 10 = 2,3 races per day during 4 days





in each race each boat gets a rank 1 ≤ rank ≤ 100

no equal rank (no ex-aequo)

how to determine the final rank of a boat (and thus the winner) :

1) for each boat add its ranks in each race → its score nt

here nb = 100 and nr = 10 ⇒ 10 ≤ nt ≤ 1000

nt = 10 → lowest score always 1rst

nt = 1000 → highest score always 100 th

nt = 10×50 = 500 → middle score

2) order the scores ⇒ final rank :

the boat with lowest score ⇒ winner 1rst

the next boat after the winner ⇒ second 2nd

. . .



what is the problem ?

for example consider the ranks of a given boat to be
51,67,76,66,55,39,67,59,66,54 → its score nt = 600

clearly this boat has a mean rank 600
10 = 60

→ on average it has been 60th

→ one might naively expect its final rank to be around 60th

no way : its final rank will rather be around 70th → ”curse”

see Spi Ouest 2009 data :





NB :

51,67,(76),66,55,39,67,59,66,54

implies that the highest rank (76) is not taken into account

⇒ 9 races : 51,67, ,66,55,39,67,59,66,54 → score nt = 524

⇒ mean rank 524
9 = 58

on average 58th → 70th even worse



a qualitative explanation of this ”curse” is simple :

given the ranks of the boat : 51,67,76,66,55,39,67,59,66,54

assume that the ranks of the other boats are random variables with uniform
distribution

random ranks : a good assumption if the crews are more or less equally
worthy (which is in part the case)

since no ex aequo it means :

ranks of the other boats = a random permutation

in the first race : random permutation of (1,2,3, ...,50,52, ...,100)

in the second race : random permutation of (1,2,3, ...,66,68, ...,100)

. . .

each race is obviously independent from the others

→ a score is a sum of 10 independent random variables



10 is already a large number in probability calculus :

→ Central Limit Theorem applies

→ scores are random variables with gaussian probability density centered
around the middle score 10×50 = 500

gaussian distribution ⇒ a lot a boats with scores packed around 500

if the score of a boat is > 500
its final rank is pushed upward from its mean rank

⇒ statistical ”curse”

on the contrary if the score of a boat is < 500
its final rank is pushed downward from its mean rank

⇒ statistical ”blessing”



write things more precisely : namely given the score nt of a boat what is the
probability distribution Pnt (m) for its final rank to be m ?

a complication : Pnt (m) does not depend only on the score nt of the boat but
also on its ranks in each race

for example : nr = 3, nb = 3 with a boat with score nt = 6

it is very easy to check by complete enumeration that
P6=2+2+2(m) ̸= P6=1+2+3(m) (distributions are similar but different)

→ a simplification : consider nb boats with random ranks

i.e ranks = random permutation of (1,2,3, . . . ,nb)

⊕ an additional/virtual boat specified only by its score nt

→ same question : given the score nt of a virtual boat what is the probability
distribution Pnt (m) for its final rank to be m ?

→ almost the same but simpler



call ni,k rank of the boat i in a given race k (1 ≤ i ≤ nb and 1 ≤ k ≤ nr)

⟨ni,k⟩=
1+nb

2

no ex-aequo in race k : ⇒ the ni,k’s are correlated random variables

sum rule
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∑
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ni,k ⇒ score of boat i = ∑nr
k=1 ni,k ≡ ni and middle score = nr

1+nb
2

large nr limit → Central Limit Theorem for correlated random variables

⇒ joint density probability distribution
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for a virtual boat with score nt :

Pnt (m) is the probability for m−1 boats among the nb’s to have a score
ni < nt and for the other nb −m+1’s to have a score ni ≥ nt

Pnt (m) =
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take also large number of boats limit → saddle point approximation to
finally get ⟨m⟩= cumulative probability distribution of a normal variable
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⟨r⟩= ⟨m⟩
nb

nb = 200

nr = 30

middle score = 3000

dots = numerics

blessing/curse
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correlations effects



now consider small number of races nr = 2,3, . . . and boats nb = 1,2, . . .

⇒ combinatorics problem

the simplest case nr = 2 : like a ”2-body” problem

⇒ exact solution for Pnt (m)

how to proceed :

i) represent possible configurations of ranks in the two races by points on a
nb ×nb lattice

2 races ↔ square lattice, 3 races ↔ cubic lattice, . . .

no ex aequo ⇒ 1 point per line and per column

in general for nb boats and nr races → (nb!)nr−1 such configurations

ii) enumerate the configurations with m−1 points below the diagonal nt

⇒ final rank m
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combinatorics (not easy) :

for 2 ≤ nt ≤ 1+nb

⇒Pnt (m)= (1+nb)
m−1

∑
k=0

(−1)k(1+nb−nt +m−k)nt−1 (nb −nt +m− k)!
k!(1+nb − k)!(m− k−1)!

for 2+nb ≤ nt ≤ 2nb +1 by symmetry Pnb+1−k(nb +2−m) = Pnb+2+k(m)

for the middle score nt = 2 1+nb
2 = 1+nb

⇒ Pnt=1+nb(m) = (1+nb)
m−1

∑
k=0

(−1)k (m− k)nb

k!(1+nb − k)!
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Table@p@nb, nt = 1 + nb, mD nb!, 8nb, 1, 7<, 8m, 1, nb + 1<D

881, 0<, 81, 1, 0<, 81, 4, 1, 0<, 81, 11, 11, 1, 0<, 81, 26, 66, 26, 1, 0<,
81, 57, 302, 302, 57, 1, 0<, 81, 120, 1191, 2416, 1191, 120, 1, 0<<

® Eulerian numbers





Eulerian number =

the number of permutations of the numbers 1 to n in which exactly m
elements are greater than the previous element (permutations with m
”ascents”)



n = 4 (1,4,2,3)→ m = 2



generating function

g@x, yD =
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-ãx y + ãx y

Series@g@x, yD, 8x, 0, 6<D
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6
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+ y3M x4
+

1
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I1 + 26 y + 66 y2

+ 26 y3
+ y4M x5

+
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why Eulerian numbers should play a role here seems a mystery

but : an other way to look at things by rewriting

Pnt (m) =
1

nb! ∑
i=m

(−1)i+mnnt (i)(1+nb − i)!
(

i−1
m−1

)
nnt (i) = Stirling partition numbers : count in how many ways can the
numbers (1,2, . . . ,nt −1) be partitioned in i groups

example nt = 5 : → 1 way to split the numbers (1,2,3,4) into 1 group

→ 7 ways to split the numbers (1,2,3,4) into 2 groups

(1),(2,3,4);(2),(1,3,4);(3),(1,2,4);(4),(1,2,3);(1,2),(3,4);(1,3),(2,4);(1,4),(2,3)

→ 6 ways to split the numbers (1,2,3,4) into 3 groups

(1),(2),(3,4);(1),(3),(2,4);(1),(4),(2,3);(2),(3),(1,4);(2),(4),(1,3);(3),(4),(1,2)

→ 1 way to split the numbers (1,2,3,4) into 4 groups



nt = 5 → 1,6,7,1

why Stirling numbers should play a role here seems again a mystery

they appear from graph counting considerations on the configuration lattice :

for example for nt = 5
consider all the points below the diagonal





so from graph counting

nnt+1(i+1) = under the diagonal nt number of subgraphs with i points fully
connected

→ recurrence relation :

either 0 point on the diagonal nt −1 → nnt (i+1)
(

nt−1
0

)
either 1 point on the diagonal nt −1 → nnt−1(i)

(
nt−1

1

)
either 2 points on the diagonal nt −1 → nnt−2(i−1)

(
nt−1

2

)
. . .

⇒ nnt+1(i+1) = ∑i
k=0 nnt−k(i+1− k)

(
nt−1

k

)
⇔ recurrence relation for Stirling partition numbers



there is indeed a one to one correspondance between Stirling partition (in
fact second class Stirling) numbers and Eulerian numbers

Eulerian[n,k] =
k+1

∑
j=1

(−1)k− j+1
(

n− j
n− k−1

)
j! Stirling[n, j]



why all this ?

2 races : Pnt (m) =
1

nb! ∑
i=m

(−1)i+mnnt (i)(1+nb − i)!
(

i−1
m−1

)

→ nr races : Pnt (m)=
1

(nb!)nr−1 ∑
i=m

(−1)i+mnnt (i,nr)(1+nb−i)!nr−1
(

i−1
m−1

)

how to calculate nnt (i,nr) ? → work in progress


